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I Original: calculate a maximal
set of safe initial conditions for
each aircraft for a maneuver

I Simulation: single initial state,
deterministic

I Focus on modeling resets in
hybrid automata

I Two virtual cylinders around
each aircraft:

protected zone zones must never overlap
alert zone must exchange information

for conflict prediction and
resolution
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e

alert zone

α1

α2

Cruise Cruise until aircraft are
α1 miles apart.

Left Each aircraft changes
heading by ∆◦. Both
fly until d miles apart.

Straight Each returns to original
heading. Both fly until
α2 miles apart.

Right Each changes heading
by −∆◦ and returns to
original flight path.
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(Fig. 2, Tomlin et al.)

I The maneuver looks like this from a
fixed perspective

I But the model is relative to aircraft 1:
only aircraft 2 appears to move

I Note also that heading changes are
modeled as instantaneous and
simultaneous
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ẏr = v2 sinφr

φ̇r = 0
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(Fig. 8, Tomlin et al.)


